Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 508
Filtrar
1.
AMB Express ; 14(1): 40, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656563

RESUMO

This study aimed to identify carbapenem-resistant Klebsiella pneumoniae (CRKP) based on changes in levels of its volatile organic compounds (VOCs) in simulated blood cultures (BCs) using the gas chromatography-ion mobility spectrometry (GC-IMS) technique. A comprehensive analysis of volatile metabolites produced by Klebsiella pneumoniae (K. pneumoniae) in BC bottles was conducted using GC-IMS. Subsequently, the released VOCs were analyzed to examine differences in VOC release between CRKP and carbapenem-susceptible Klebsiella pneumoniae (CSKP). A total of 54 VOCs were detected, of which 18 (6 VOCs found in both monomer and dimer forms) were successfully identified. The VOCs produced by K. pneumoniae in BC bottles (BacT/ALERT® SA) were primarily composed of organic acids, alcohols, esters, and ketones. The content of certain VOCs was significantly different between CRKP and CSKP after the addition of imipenem (IPM). Moreover, the inclusion of carbapenemase inhibitors facilitated the identification of carbapenemase-producing K. pneumoniae based on the variations in VOCs. This study demonstrates the utility of GC-IMS technology in identifying CRKP, and reveals that changes in VOCs are closely related to the growth and metabolism of K. pneumoniae, indicating that they can be leveraged to promote early identification of CRKP bacteremia. However, further in-depth studies and experiments are needed to validate our findings.

2.
Huan Jing Ke Xue ; 45(5): 2537-2547, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629519

RESUMO

To explore the content and variation characteristics of water-soluble ions of atmospheric fine particles (PM2.5) in a Beijing urban area and put forward the pollution prevention and control scheme, the water-soluble ions, gaseous precursors (SO2, NO2), and meteorological factors (temperature, RH) of PM2.5 in 2022 were analyzed and determined. The results showed that the water-soluble ions with the highest proportion in PM2.5 in the Beijing City urban area were NO3-, NH4+, and SO42-, accounting for 52.7% of PM2.5. The mass concentrations of PM2.5 and SNA were lower than the historical results, whereas the proportion of SNA, SOR, and NOR was higher than the historical results. This showed that the fine particulate matter pollution in Beijing has been significantly improved, but it still has strong secondary pollution characteristics. NO3-/SO42-(2.2) was higher than those of historical and nearby provinces and cities, reflecting the expanding influence of mobile sources. In terms of seasonal variation, PM2.5 showed the characteristic of high in autumn and low in summer. The proportion of NO3- was the highest in autumn, spring, and winter; the proportion of SO42- was the highest in summer; and the proportion of NH4+ changed little in each season. The seasonal variation rules of NOR and SOR were almost opposite, which reflected the difference in transformation factors between NOR and SOR. The main forms of SNA in the Beijing urban area were NH4NO3 and (NH4)2SO4. The neutralization degree of cations and anions was the highest in winter, the cation NH4+ was slightly insufficient in summer, and NH4+ was in excess in spring and autumn. The Beijing urban area was an ammonia-rich environment. In terms of pollution level, RH, particulate matter moisture, and water-soluble ions mass concentration all increased with the increase in pollution level, and SNA increased fastest, with its proportion in PM2.5 increasing first and then stabilizing, whereas the contribution rate of other water-soluble ions decreased gradually. In terms of spatial distribution, the mass concentration relationship of SNA at the central urban area and suburbs was NO3- > SO42- > NH4+, which reflected the pollution characteristics dominated by NO3-. The highest contribution rate of SNA to PM2.5 occurred in the eastern region, the central urban area, and the transmission point, indicating that the secondary reaction was relatively active in the central urban area and the eastern region, and the regional transport was also an important source of secondary ions.

3.
J Anim Ecol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38634153

RESUMO

Research Highlight: Christian, M., Oosthuizen, W. C., Bester, M. N., & de Bruyn, P. N. (2024). Robustly estimating the demographic contribution of immigration: Simulation, sensitivity analysis and seals. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.14053. Immigration can have profound consequences for local population dynamics and demography, but collecting data to accurately quantifying it is challenging. The recent rise of integrated population models (IPMs) offers an alternative by making it possible to estimate immigration without the need for explicit data, and to quantify its contribution to population dynamics through transient Life Table Response Experiments (tLTREs). Simulation studies have, however, highlighted that this approach can be prone to bias and overestimation. In their new study, Christian et al. address one of the root causes of this issue by improving the estimation of time variation in vital rates and immigration using Gaussian processes in lieu of traditionally used temporal random effects. They demonstrate that IPM-tLTRE frameworks with Gaussian processes produce more accurate and less biased estimates of immigration and its contribution to population dynamics and illustrate the applicability of this approach using a long-term data set on elephant seals (Mirounga leonida). Results are validated with a simulation study and suggest that immigration of breeding females has been central for population recovery of elephant seals despite the species' high female site fidelity. Christian et al. thus present new insights into population regulation of long-lived marine mammals and highlight the potential for using Gaussian process priors in IPMs. They also illustrate a suite of 'best practices' for state-of-the-art IPM-tLTRE analyses and provide an inspirational example for the kind of ecological modelling workflow that can be invaluable not just as a starting point for fellow ecologists picking up or improving their own IPM-tLTRE analyses, but also for teaching and in contexts where model estimates are used for informing management and conservation decision-making.

4.
Plants (Basel) ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611481

RESUMO

Although nanoparticles have gained attention as efficient alternatives to conventional agricultural chemicals, there is limited knowledge regarding their effects on herbivorous insect behavior and plant physicochemistry. Here, we investigated the effects of foliar applications of nano-silica (SiO2NPs) and nano-selenium (SeNPs), and bulk-size silica (SiO2) on the choice behavior of the arrowhead scale insect on mandarin orange plants. One leaf of a bifoliate pair was treated with one of the three chemicals, while the other was treated with water (control). The respective SiO2, SeO2, calcium (Ca), and carbon (C) content levels in the leaf epidermis and mesophyll were quantified using SEM-EDX (or SEM-EDS); leaf toughness and the arrowhead scale density and body size were measured. First-instar nymphs preferred silica-treated leaves and avoided SeNP-treated leaves. SiO2 content did not differ between control and SiO2NP-treated leaves, but was higher in bulk-size SiO2-treated leaves. The SiO2 level in the control leaves was higher in the SiO2NP treatment compared with that in the control leaves in the bulk-size SiO2 treatment. Silica-treated leaves increased in toughness, but SeNP-treated leaves did not; leaf toughness increased with mesophyllic SiO2 content. The insect density per leaf increased with leaf toughness, SiO2 content and, in the SiO2NP treatment, with epidermal C content. There was no correlation between SeO2 content and insect density. This study highlights the potential uses of SeNPs as an insect deterrent and of silica for enhancing leaf toughness and attracting scale insects.

5.
Exp Appl Acarol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637448

RESUMO

The European red mite Panonychus ulmi (Koch) is widely distributed and it can severely affect pome fruit crops, particularly apple. Pest outbreaks are related to an overuse of non-selective pesticide treatments that lead to the development of resistance and the absence of natural enemies in the orchard. A key aspect to optimize the use of pesticide treatments in the context of IPM is to increase the knowledge on the biology and ecology of the pest to better predict population dynamics and outbreaks. For the European red mite, knowledge on the conditions that lead to diapause breaking by winter eggs is essential to model population dynamics. To increase this knowledge, winter eggs were collected during field surveys in northen Spain during three years and egg hatching was monitored under controlled temperature and photoperiod conditions in the laboratory. The "number of days exposed to cold temperatures" was the most significant factor that positively affected hatching of overwintering eggs. The time required for 50% of the egg population to hatch (T50%) was also negatively modulated by the duration of exposure to cold temperature. The temperature threshold for postdiapause eggs development collected from the field was estimated between 5 and 6 ºC in 2005 and 2007, respectively. Moreover, the degree-days required for post diapause development were estimated between 263.2 and 270.3, depending on the year of collection. Collectively, we provide additional information on the diapause termination and postdiapause development of the European red mite that may effectively contribute to optimize pest population models.

6.
CVIR Endovasc ; 7(1): 27, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466503

RESUMO

BACKGROUND: Imipenem/cilastatin (IPM/CS) has long been administered intravenously as a carbapenem antibiotic. However, since this agent is poorly soluble in liquid, occasional reports have described its use as a short-acting, temporary embolic agent. The purpose of this study was to elucidate the characteristics of IPM/CS particles, which are thought to have pain-relieving effects against osteoarthritis-related pain, as an embolic agent. METHODS: Three aspects of IPM/CS as an embolic agent were evaluated in vitro: particle size; particle shape; and change in particle size over time. For particle size, the long diameter was measured. RESULTS: Mean particle size (n=244) was 29.2±12.0 µm (range, 1-60 µm). Shape (n=109) was round in 18.35%, elliptical in 11.93%, and polygonal in 69.72%, showing that most particles were polygonal. In observations of changes in particle size over time (n=9), particles had decreased to 75% of their original size at 82±10.7 min, 50% at 89.3±9.14 min, 25% at 91.3±8.74 min, complete dissolved at 91.8±9.02 min. A rapid shrinkage in diameter was seen in the final period. CONCLUSIONS: IPM/CS particles are ultrafine and the majority display a polygonal shape. This substance shows ultra-short embolic activity. This study revealed the characteristics of a substance that demonstrates an embolic effect not found in existing embolic materials.

7.
J Pestic Sci ; 49(1): 15-21, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38450092

RESUMO

A lure composed of (Z)-11-hexadecenal, (Z)-11-hexadecenyl acetate, and (Z)-11-hexadecen-1-ol at a ratio of 5 : 5 : 1 at a dose of 0.01 mg was optimal for the attraction of the Vietnamese strain of the diamondback moth (DBM). The combination of the sex pheromone with a plant volatile, allyl isothiocyanate, significantly increased the attraction of the pheromone trap. Females were also attracted, but they were only about 2% of all moths captured. In plots with 120-130 traps per ha, mass trapping with the combined lures reduced the DBM larval densities in cabbage fields as effectively as the spraying of insecticides 6 to 8 times. The weekly trap catches indicated that DBM adult densities in the mass-trapping fields were low until 28 days after transplantation, and then were kept to a modest increase until day 49. This field study also shows that the trap catches were well correlated with the DBM larval densities.

8.
Pest Manag Sci ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477428

RESUMO

BACKGROUND: Cabbage stem flea beetle (CSFB, Psylliodes chrysocephala L.) is a major pest of oilseed rape (OSR, Brassica napus L.) in the UK and low availability of effective chemical control has increased the need for integrated pest management approaches. The risk of OSR to lodging is strongly related to stem strength, however, the impact of CSFB larval tunnelling on stem strength and subsequent risk to stem lodging is unknown. The study investigated this by applying the Generalised Crop Lodging Model to conventionally grown OSR crops scored for varying levels of CSFB larval tunnelling. Lodging risk mitigation strategies including plant growth regulators (PGR) and varying nitrogen regimes were tested under high CSFB larval pressure. RESULTS: Stems of OSR plants were categorised by the proportion of visual damage (< 5%; 5-25%; 26-50%; 51-75%; 75-100%). Stems of 26-50% damage had significantly lower breaking strengths and diameters compared to plants that scored < 5%, with the associated reduction in stem failure windspeed equivalent to an order of magnitude increase in the risk of a lodging event occurring in the UK. PGR use reduced plant height and subsequently lodging risk variably across the sites. CONCLUSION: Estimating the proportion of stem tunnelling alongside larval pressure may be a useful tool in considering the contribution of CSFB pressure to lodging risk. The research demonstrates that the use of canopy management principles to optimise canopy size through nitrogen management and PGR use may help offset increased lodging risk caused by CSFB tunnelling. © 2024 Society of Chemical Industry.

9.
Sci Rep ; 14(1): 7118, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532112

RESUMO

Invasive alien species (IAS) pose a severe threat to global agriculture, with their impact projected to escalate due to climate change and expanding international trade. The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), a native of the Americas, has rapidly spread across various continents, causing significant damage to several food crops, especially maize. Integrated pest management (IPM) programs are vital for sustainable FAW control, combining multiple strategies for sustainable results. Over three consecutive years, 2019-20, 2020-21 and 2021-22, the field demonstrations were conducted in semiarid regions of India, testing a four-component IPM approach viz., pheromone traps, microbial, botanicals and ETL based applications of insecticides against farmers' practices (sole insecticide application). IPM implementation led to substantial reductions in FAW infestation. Furthermore, egg mass and larvae infestations were significantly lower in IPM-adopted villages compared to conventional practices. Pheromone-based monitoring demonstrated a consistent reduction in adult moth populations. The lowest technology gap (10.42), extension gap (8.33) and technology index (12.25) was recorded during 2020-21. The adoption of IPM led to increased maize yields (17.49, 12.62 and 24.87% over control), higher net returns (919, 906.20 and 992.93 USD), and favourable benefit-cost ratios (2.74, 2.39 and 2.33) compared to conventional practices respectively during 2019-20, 2020-21 and 2021-22. The economic viability of IPM strategies was evident across three consecutive years, confirming their potential for sustainable FAW management in the semiarid region of India. These strategies hold promise for adoption in other parts of the world sharing similar climatic conditions.


Assuntos
Fazendeiros , Inseticidas , Animais , Humanos , Spodoptera , Zea mays , Comércio , Internacionalidade , Controle de Pragas , Índia , Feromônios
10.
Ann Appl Biol ; 184(1): 19-36, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38516560

RESUMO

The dried bean beetle, Acanthoscelides obtectus, is an economically important pest of stored legumes worldwide. Tracking the human-aided dispersion of its primary hosts, the Phaseolus vulgaris beans, it is now widespread in most bean-growing areas of the tropics and subtropics. In temperate regions where it can only occasionally overwinter in the field, A. obtectus proliferates in granaries, having multiple generations a year. Despite its negative impact on food production, no sensitive detection or monitoring tools exist, and the reduction of local populations still relies primarily on inorganic insecticides as fumigating agents. However, in the quest to produce more nutritious food more sustainably and healthily, the development of environmentally benign crop protection methods is vital against A. obtectus. For this, knowledge of the biology and chemistry of both the host plant and its herbivore will underpin the development of, among others, chemical ecology-based approaches to form an essential part of the toolkit of integrated bruchid management. We review the semiochemistry of the mate- and host-finding behaviour of A. obtectus and provide new information about the effect of seed chemistry on the sensory and behavioural ecology of host acceptance and larval development.

11.
Plants (Basel) ; 13(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38498539

RESUMO

During 2021 and 2022, eight field-collected and five laboratory Helicoverpa zea strains with varying susceptibility to different Bt proteins were evaluated for their responses against HearNPV using diet-overlay bioassays. The five laboratory strains included SS (susceptible to all Bt proteins), CRY-RR (resistant to Cry1 and Cry2), VIP-RR-70 (resistant to Vip3Aa), VIP-RR-15 (resistant to Vip3Aa), and TRE-RR (resistant to Cry1, Cry2, and Vip3Aa). Our findings showed that the susceptibility of TRE-RR, VIP-RR-70, and VIP-RR-15 strains to HearNPV was similar to that of the SS strain. However, the field and Cry-RR strains were more resistant to HearNPV compared to the SS strain. Because most feral H. zea strains in the southern U.S. have developed practical resistance to Cry Bt proteins but remain susceptible to Vip3Aa, the results suggest that the reduced susceptibility to HearNPV in H. zea may be associated with the resistance to Cry Bt proteins but not with the resistance to Vip3Aa. Correlation analysis confirmed that there was a significant positive relationship between Cry resistance and HearNPV resistance, but not between the Vip3Aa resistance and HearNPV resistance in H. zea. Our findings provide valuable insights into the relationship between susceptibility to HearNPV and resistance to Bt proteins in H. zea.

12.
Pest Manag Sci ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456594

RESUMO

BACKGROUND: The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is a significant threat to crop production. Alternatives to synthetic pesticides are needed for its management. Here we investigated the effect of sulphur on H. halys. Experiments were performed to evaluate both mortality and deterrence/repellence of H. halys following sulphur treatments in laboratory and semi-field conditions. RESULTS: Brown marmorated stink bug mortality was not influenced by sulphur applications. However, in two-choice experiments in insect cages and olfactometer, more H. halys adults moved toward the untreated control rather than the sulphur-treated food sources, with a high effect as the concentration increased. A semi-field experiment using potted apple plants confirmed the results observed in the laboratory, showing a deterrent and/or repellent effect of sulphur-based products on H. halys. CONCLUSIONS: Sulphur applications were associated with a deterrent/repellent effect on the brown marmorated stink bug. The use of sulphur-based products could represent a promising tool for Integrated Pest Management strategies against H. halys in fruit crops. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

13.
Insects ; 15(3)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38535352

RESUMO

Herbivorous thrips that damage fruits, vegetables, field crops, and ornamentals are challenging to control using insecticides and need an integrated approach (IPM) for their management. Herbivore-induced plant volatiles (HIPVs) are semiochemical plants produced to attract natural enemies (NEs) of arthropod herbivores. Sex pheromones are animal-based semiochemicals that can attract males or females of conspecifics. The HIPV methyl salicylate (MS) is used in IPM to attract NEs. We conducted field experiments in 2018-2019 in Tennessee to study the efficacy of MS and the aggregation pheromone neryl (S)-2-methylbutanoate (NMB), which attracts Frankliniella occidentalis (FO), a dominant pest of many crops, in attracting thrips using sweet peppers. We found a significantly higher number of thrips in traps baited with MS than in the traps containing NMB when compared with a no-lure control. All treatments caught only one thrips species, Frankliniella tritici (FT), a significant pest of young cotton. It can also lower the abundance of FO in other crops. Our findings show that although FO was not found in the study location in Tennessee, traps baited with MS are suitable for managing FT and reducing FO in susceptible crops by increasing FT and attracting NEs to crop productions that use IPM-based management practices.

14.
Insects ; 15(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535404

RESUMO

The use of nanofertilizers has both advantages and concerns. One benefit is that nano-fertilizers can enhance plant resistance against insect pests, making them a valuable strategy in integrated pest management (IPM). This study focused on the effect of wheat leaves treated with nano-chelated fertilizers and nitrogen (N) fertilizer on the wheat aphid (Schizaphis graminum Rondani), a harmful pest of wheat plants that transmits dangerous viruses. The nano-Cu treatment showed the longest pre-adult longevity. Additionally, the nano-Cu treatment resulted in the lowest adult longevity, fecundity, nymphoposition day number, intrinsic rate of population growth (r), finite rate of population increase (λ), and net reproductive rate (R0) and gross reproductive rate (GRR). Also, nano-Cu treatment led to the highest amount of (T). The N treatment led to the highest levels of fecundity, nymphoposition days, r, λ, and R0. Nano-Fe and nano-Zn demonstrated fewer negative effects on S. graminum life table parameters than nano-Cu. Our results indicate that N treatment yielded numerous advantageous effects on the wheat aphid while simultaneously impeding the efficacy of the aphid control program. Conversely, nano-Cu treatment exhibited a detrimental influence on various parameters of the aphid's life table, resulting in a reduction in the pest's fitness. Consequently, the integration of nano-Cu should be seriously considered as a viable option in the IPM of the wheat aphid.

15.
Pest Manag Sci ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407557

RESUMO

In Australia, macadamia orchards are attacked by four main insect pest groups. Management and control of three of these key pests currently relies on broad-spectrum insecticides whose long-term future is questionable. Of the 23 insecticides registered for use in macadamia in Australia, 19 face issues affecting their availability and 12 are presently not approved in the EU, the USA or Canada. These international markets may refuse produce that does not adhere to their own insecticide use standards, hence Australian produce may be excluded from market access. Many of the potential replacement integrated pest management methods of pest control are generally considered less effective by the industry and have not been adopted. There are 17 insect pest groups identified by the industry, any of which have potential to become major problems if broad-spectrum insecticide options become unavailable. Thirteen pest groups need urgent attention as they are at risk of losing current effective control methods, and no replacement solutions have yet been developed. The lag period for research and development to identify new chemical and biological control solutions means there is now an urgent need for the macadamia industry to craft a strategy for sustainable pest management for each pest. Critically, this industry strategy needs to address the vulnerabilities identified in this paper, identify potential solutions for any cases of market failure and consider funding mechanisms to address these gaps. On economic and sustainability grounds, potential biological control options should be explored, especially in cases where insecticide control options are vulnerable. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

16.
J Econ Entomol ; 117(2): 529-536, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38367210

RESUMO

The Columbia Basin of Oregon and Washington is one of the most productive potatoes, Solanum tuberosum L., growing regions in the United States affected by numerous insect pests. Lygus bugs, Lygus spp. (Hemiptera: Miridae), are an increasing problem in potatoes. In 2015, after an outbreak of lygus bugs in potatoes in the Columbia Basin, potato producers used multiple applications of insecticides to control lygus bugs. However, it is poorly researched whether lygus bugs can cause economic damage to the crop. Therefore, our objectives were (i) to determine lygus bugs presence in potato plants, (ii) to determine damage on most commonly grown potato varieties (e.g., Alturas Russet, Ranger Russet, Umatilla Russet, Russet Burbank, and Clearwater Russet), (iii) to determine the number of insecticide applications needed to control lygus bugs, and (iv) to estimate the relationship between lygus bug density and potato yield loss. This study demonstrated that the lygus complex is widely present in the Columbia Basin, Lygus spp. prefers the upper 1/3 section of potato plants in all varieties tested, and the number of applications throughout a field season does not affect yield regardless of variety.


Assuntos
Heterópteros , Inseticidas , Solanum tuberosum , Animais , Oregon , Washington
17.
J Anim Ecol ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297453

RESUMO

Identifying important demographic drivers of population dynamics is fundamental for understanding life-history evolution and implementing effective conservation measures. Integrated population models (IPMs) coupled with transient life table response experiments (tLTREs) allow ecologists to quantify the contributions of demographic parameters to observed population change. While IPMs can estimate parameters that are not estimable using any data source alone, for example, immigration, the estimated contribution of such parameters to population change is prone to bias. Currently, it is unclear when robust conclusions can be drawn from them. We sought to understand the drivers of a rebounding southern elephant seal population on Marion Island using the IPM-tLTRE framework, applied to count and mark-recapture data on 9500 female seals over nearly 40 years. Given the uncertainty around IPM-tLTRE estimates of immigration, we also aimed to investigate the utility of simulation and sensitivity analyses as general tools for evaluating the robustness of conclusions obtained in this framework. Using a Bayesian IPM and tLTRE analysis, we quantified the contributions of survival, immigration and population structure to population growth. We assessed the sensitivity of our estimates to choice of multivariate priors on immigration and other vital rates. To do so we make a novel application of Gaussian process priors, in comparison with commonly used shrinkage priors. Using simulation, we assessed our model's ability to estimate the demographic contribution of immigration under different levels of temporal variance in immigration. The tLTRE analysis suggested that adult survival and immigration were the most important drivers of recent population growth. While the contribution of immigration was sensitive to prior choices, the estimate was consistently large. Furthermore, our simulation study validated the importance of immigration by showing that our estimate of its demographic contribution is unlikely to result as a biased overestimate. Our results highlight the connectivity between distant populations of southern elephant seals, illustrating that female dispersal can be important in regulating the abundance of local populations even when natal site fidelity is high. More generally, we demonstrate how robust ecological conclusions may be obtained about immigration from the IPM-tLTRE framework, by combining sensitivity analysis and simulation.

18.
Sci Total Environ ; 922: 171248, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38402956

RESUMO

Wildflower plantings adjacent to agricultural fields provide diverse floral resources and nesting sites for wild bees. However, their proximity to pest control activities in the crop may result in pesticide exposure if pesticides drift into pollinator plantings. To quantify pesticide residues in pollinator plantings, we sampled flowers and soil from pollinator plantings and compared them to samples from unenhanced field margins and crop row middles. At conventionally managed farms, flowers from pollinator plantings had similar exposure profiles to those from unenhanced field margins or crop row middles, with multiple pesticides and high and similar risk quotient (RQ) values (with pollinator planting RQ: 3.9; without pollinator planting RQ: 4.0). Whereas samples from unsprayed sites had significantly lower risk (RQ: 0.005). Soil samples had overall low risk to bees. Additionally, we placed bumble bee colonies (Bombus impatiens) in field margins of crop fields with and without pollinator plantings and measured residues in bee-collected pollen. Pesticide exposure was similar in pollen from sites with or without pollinator plantings, and risk was generally high (with pollinator planting RQ: 0.5; without pollinator planting RQ: 1.1) and not significant between the two field types. Risk was lower at sites where there was no pesticide activity (RQ: 0.3), but again there was no significant difference between management types. The insecticide phosmet, which is used on blueberry farms for control of Drosophila suzukii, accounted for the majority of elevated risk. Additionally, analysis of pollen collected by bumble bees found no significant difference in floral species richness between sites with or without pollinator plantings. Our results suggest that pollinator plantings do not reduce pesticide risk and do not increase pollen diversity collected by B. impatiens, further highlighting the need to reduce exposure through enhanced IPM adoption, drift mitigation, and removal of attractive flowering weeds prior to insecticide applications.


Assuntos
Mirtilos Azuis (Planta) , Inseticidas , Praguicidas , Animais , Abelhas , Pólen , Solo , Polinização
19.
J Thorac Dis ; 16(1): 491-497, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38410583

RESUMO

Background: The incidence of synchronous multiple primary lung cancer (SMPLC) is increasing, occurring in up to 20% of lung cancer patients. Accurately identifying SMPLC can be challenging, and failure to recognize SMPLC results in poor outcomes. We sought to assess the staging accuracy of patients with SMPLC at our tertiary institution. Methods: We retrospectively reviewed all patients who were evaluated for lung cancer resection between January 2018 to September 2019. Patients with SMPLC were identified using the modified Martini-Melamed criteria. Preoperative imaging, clinical assessment, and pathologic interpretation were reviewed and compared to the final staging assigned by a multidisciplinary lung cancer tumor board to determine accuracy. Results: Out of 227 patients presenting for lung cancer resection, 47 patients with 119 SMPLC were identified, of which 38 (80.9%) were incorrectly staged by at least one report. Incorrect staging was most common by computed tomography (CT) reports (n=33/47, 70.2%), followed by positron emission tomography-CT (PET-CT) reports (n=28/45, 62.2%), surgeons' clinical assessment (n=10/47, 21.3%), and histopathology reports (n=8/47, 17.0%). CT reports, when incorrect, under-staged 97.0% (n=32) of patients. PET-CT reports, when incorrect, over-staged 25.0% (n=7) of patients by reporting the second primary nodule to be "consistent with metastasis". Histopathology reports, when incorrect, over-staged 87.5% (n=7) of patients despite lack of lymph node involvement. Conclusions: Patients with SMPLC are at risk of receiving incorrect treatment based on radiographic and histopathologic staging reports alone. The observed staging inaccuracies are concerning, necessitating increased awareness among physicians caring for lung cancer patients.

20.
Front Plant Sci ; 15: 1349357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379944

RESUMO

Agricultural productivity in the Great Lakes Countries of Central Africa, including Burundi, Rwanda, and the Democratic Republic of Congo, is affected by a wide range of diseases and pests which are mainly controlled by chemical pesticides. However, more than 30% of the pesticides used in the region are banned in European Union due to their high toxicity. Globally available safe and eco-friendly biological alternatives to chemicals are virtually non-existent in the region. Bacillus PGPR-based biocontrol products are the most dominant in the market and have proven their efficacy in controlling major plant diseases reported in the region. With this review, we present the current situation of disease and pest management and urge the need to utilize Bacillus-based control as a possible sustainable alternative to chemical pesticides. A repertoire of strains from the Bacillus subtilis group that have shown great potential to antagonize local pathogens is provided, and efforts to promote their use, as well as the search for indigenous and more adapted Bacillus strains to local agro-ecological conditions, should be undertaken to make sustainable agriculture a reality in the region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...